Fan-Extensions in Fragile Matroids
نویسندگان
چکیده
If S is a set of matroids, then the matroid M is S-fragile if, for every element e ∈ E(M), either M\e or M/e has no minor isomorphic to a member of S. Excluded-minor characterizations often depend, implicitly or explicitly, on understanding classes of fragile matroids. In certain cases, when M is a minor-closed class of S-fragile matroids, and N ∈M, the only members ofM that contain N as a minor are obtained from N by increasing the length of fans. We prove that if this is the case, then we can certify it with a finite case-analysis. The analysis involves examining matroids that are at most two elements larger than N .
منابع مشابه
On series-parallel extensions of uniform matroids
This paper gives an excluded-minor characterization of the class of matroids that are series-parallel extensions of uniform matroids.
متن کاملGeneration of Oriented Matroids - A Graph Theoretical Approach
We discuss methods for the generation of oriented matroids and of isomorphism classes of oriented matroids. Our methods are based on single element extensions and graph theoretical representations of oriented matroids, and all these methods work in general rank and for nonuniform and uniform oriented matroids as well. We consider two types of graphs, cocircuit graphs and tope graphs, and discus...
متن کاملOn the Structure of 3-connected Matroids and Graphs
An element e of a 3-connected matroid M is essential if neither the deletion M\e nor the contraction M/e is 3-connected. Tutte’s Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. In this paper, we consider those 3-connected matroids that have some non-essential elements, showing that every such matroid M must have ...
متن کاملExtension Spaces of Oriented Matroids
We study the space of all extensions of a real hyperplane arrangement by a new pseudo-hyperplane, and, more generally, of an oriented matroid by a new element. The question whether this space has the homotopy type of a sphere is a special case of the “Generalized Baues Problem” of Billera, Kapranov & Sturmfels, via the Bohne-Dress Theorem on zonotopal tilings. We prove that the extension space ...
متن کاملCircular Flow and Circular Chromatic Number in the Matroid Context
This thesis considers circular flow-type and circular chromatic-type parameters (φ and χ, respectively) for matroids. In particular we focus on orientable matroids and 6 √ 1-matroids. These parameters are obtained via two approaches: algebraic and orientation-based. The general questions we discuss are: bounds for flow number; characterizations of Eulerian and bipartite matroids; and possible c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015